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Abstract
Convergence of linear quadratic regulator (LQR) problems in structures is discussed. The abstract
formulation of the system using a variational framework based on sesquilinear forms is considered. Since
convergence theorems require uniform stabilizability of the finite dimensional approximating system, we
present a detailed proof of a fundamental lemma due to Banks and Ito which can be used to easily verify
this condition for many applications. Existing results for the well posedness of the infinite dimensional

system and convergence of Galerkin approximations are summarized.
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1 Introduction

In this paper we discuss in detail the proof of Lemma 6.2 in the electronic and CRSC tech-
nical report versions of [1] (stated as Lemma 7.13 in [2]) which allows verification of uniform
stabilizability of a family of finite dimensional approximating systems arising in feedback con-
trol formulations. This uniform stabilizability condition is sufficient for the desired convergence
theorems for gains, controls and trajectories. Since structural applications are of interest to us,
the partial differential equations we consider are second order in time and are motivated by a
simple example of a cantilever beam. We discuss details of this proof since it has appeared only
in the electronic version of [1] and the proof appearing there was only a sketch of the arguments.
We believe the ideas behind this proof can be extended to treat a much larger class of examples
than those indicated below.

The system we consider entails Kelvin-Voigt or strong damping and the lemma requires a
strong assumption regarding the relationship between the stiffness, Kelvin-Voigt damping and air
damping coeflicients. This assumption is reasonable for homogeneous structures such as beams,
plates or shells with actuators (such as piezoceramic patches) embedded in a manner so that
models with material properties which do not vary across the region of the actuators are good
approximations.

The theoretical control results we present are valid for systems with bounded observation
operators. Since current sensing devices yield observation operators that are discontinuous in
nature, we refer the reader to extended results regarding unbounded observation operators in [1,
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Section 6.2]. We also assume no persistent exogenous force is acting on the system and thus we
are interested in applications in which the structure or actuators start with a deformation and
vibrates to a steady state. This is also useful in applications where the system is subjected to
an impulsive force. For systems with exogenous disturbance, the theory is less complete but a
number of computational investigations have been carried out on systems with periodic exogenous
forces. We refer the reader to [2] for a summary of results for infinite and finite dimensional
control of systems with periodic exogenous disturbance. Numerical confirmation involving LQR
control of thin cylindrical shells with transient and periodic exogenous disturbances can be found
in [3, 4, 5]. For experimental and numerical results of control of plate systems, see [6].

In Section 2 we discuss the abstract system and introduce the motivating example which is
control of transverse vibrations of a beam as presented in [2]. We then summarize results for
infinite dimensional control in Section 3. Approximation, LQR control and the detailed proof of
Lemma 6.2 of [1] are given in Section 4.

2 Abstract System
Consider the abstract second-order (in time) variational system

(@(8), ) yu v + 02(b (1), 1) + o1 (w(t),$) = (Bu(t),¢),,.

’LU(O) = Wo, ’U}(O) =w,

(2.1)

where o1 and oy are sesquilinear forms from V x V to €. Let V and H be complex Hilbert

V — H — V* (for details regarding Gelfand triples, see [7, 8]). Here V* and H* are the dual
spaces to V and H, respectively and H is identified with H* through the Riesz map. We take

spaces with V' continuously embedded in H (i.e., |4]lg < k||¢|lv), forming a Gelfand triple

the duality product (-,-);. .y, on V* X V' to be the unique extension by continuity of the scalar
product (-,-); of H defined on H x V. Thus, the elements v* € V* have the representation
v*(v) = (v*,v)y. . Furthermore, assume that the embedding ¢ from V' into H is compact, and
that the stiffness sesquilinear form oy is V-continuous, positive and symmetric, i.e.,

(H1)  |oi(e, )| < ecildly 9]y, for someci € R (V-continuous)
(H2) Reo1(¢,¢) > c2 |¢|%,, for some c2 > 0 (V-elliptic)

(H3)  01(,9) = 01(¢, 8) (symmetric) .

Assume further that the damping form o5 has the properties
(H4)  |o2(0,7)| < c3ldly 4]y, for some cz € IR (V-continuous)
(H5) Reoa(¢,¢) > ¢4 |¢|%,, for some ¢4 > 0 (V-elliptic)

From the continuity properties (H1) and (H4), we obtain operators A, As € L(V,V*) defined
by
<-A1 ¢7 ¢)V*’V = 01 (d)a w) ) v¢7 ¢ ev

(2.2)
<A2¢7 ¢)V*’V = 02(¢7 w) ) v¢7¢ ev )
and hence an equivalent formulation of (2.1) is given by
W(t) + Agi(t) + Ajw(t) = Bu(t)  in V* 2.3
2.3

w(0) = wy, w(0) =w .
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Figure 1: Cantilever beam with piezoceramic patch pair.

The control operator B : U — V* where U is the control input space is typically unbounded due
to the discontinuous geometry of actuators. The input u(t) € U usually models voltage input to
the actuators in smart material structure applications.

The system (2.1) or equivalently (2.3) arises in the abstract formulation of partial differential
equations governing smart material structures. To illustrate, consider the transverse vibrations
of a homogeneous beam with length £, thickness h, width b, linear mass density p, Young’s
modulus E and Kelvin Voigt damping ¢p. Assume that a pair of identical piezoceramic patches
are bonded to opposite sides of the beam covering the region y; < y < ya (see Figure 1). We
denote the Young’s modulus, linear mass density, thickness and damping coefficient of the patches

by Epe, ppes hpe and cp,, , respectively. Cantilever end conditions are assumed with the fixed end

e’
at y = 0 and free end at y = £. Transverse displacements of the beam will be denoted by w
and air damping coefficient by ¢,. Force and moment balancing yields the strong form of the

equation (see [2] for details in the derivation) which when written in weak form is given by

t(_8%w ~ 0%w 0?9 — OPw 0% Ow 8%
‘/0 {pw(ﬁ‘}'EIa—gﬂa—gﬂ‘}‘CpIayzata—ﬁ—FCaa _(bMy)pea—yZ}dy_O 5 (24)
for all ¢ € HZ(0,£), where
H7(0,0) = {¢ € H*(0,0)|¢(0) = ¢'(0) =0} . (2.5)

Due to the presence of the patches, the linear mass density p(y) = phb + 2bppehpeXpe(y) is
piecewise constant with the characteristic function x,.(y) used to isolate patch contributions.

Here 13 .
—~ 2
El(y) = E—+ _EPeGSXpe(y)
1273 (2.6)
— h3b
epl(y) = DTy + chpe%Xpe ()

and az = (h/2 + hye)® — h3/8.

The external moment (bM,),. depends on the voltages supplied to the two patches. Denoting
the outer and inner patch voltages by Vi (t) and Va(t), respectively, the external moment is given
by

(bMy)pe = =K xpe () Vi () = Va(#)] (2.7)



where KB = —%Epebd31(h + hpe) depends on the piezoceramic material properties. Coupled to
the system are the cantilever boundary conditions

ow

t,0 t,0) =0, Myt 4 = t,0) =0 2.8
w(t,0) = 2000 =0, My(t,0) = 5-M,(t0) = 23)
and initial conditions 5
w

w(0,y) = wo(y), a—y(O, y) =wi(y) - (2.9)

Here M, is the internal moment resultant with expression

Pw  — d%w

M, = El— I
vz [ a2 TPl 2at]

To abstractly formulate the weak form (2.4), let V = H7(0,£) and H = L*(0,¢). It readily
follows from standard Sobolev theory that V' is continuously, densely and compactly embedded
in H and hence with H forms a Gelfand triple V. — H — V*. For ¢,% € H, define the H inner
product to be

£
(6.0) = | phbvdy .
0
and for ¢, € V, the stiffness and damping sesquilinear forms are defined by

2 2

a2¢ 6% (2.10)
72(6.0) = / DT 555 Qdy+ca/ Sy
0
The control operator B : U — V* is given by
B J4 62’¢
(Bu(®).6).., = [ M,y G (211)

Here U = R and the vector u(t) € U represents the time varying voltage to the inner and outer
patches. Finally, we define the H?-equivalent inner product on V using the stiffness sesquilinear
form, i.e., (-,-)y = 01(-,).

It can be easily shown that the sesquilinear forms (2.10) satisfy (H1)-(H5) and thus the
weak form (2.4) with corresponding boundary (2.8) and initial conditions (2.9) can be abstractly
formulated using (2.1) (equivalently (2.14)).

To obtain a first order formulation of the system (2.1) (or equivalently (2.3)) amenable to
semigroup analysis and control methodologies, we define the product spaces H = V x H and
YV =V x V with norms

11,6213 = llnlly + llgllz

1gr, @)l = llgally + g2l -
It can be readily verified that these product spaces also form a Gelfand triple V — H — V*,

where V* =V x V*. The control operator is then reformulated as

Bu(t)=| _ ,
Bu(t)

and we define a sesquilinear form o : V xV — C by

o(®,0) = —{¢2,%1)y + 01(P1,%2) + 02(¢2,72)



for ® = (¢1,¢2), ¥ = (¢1,92) € V. Thus, for z(t) = (w(t),w(t)), the second-order system (2.1)
formulated in first-order form is
(0), )y y +0((0), ¥) = (Bu(t), W)y, ,  VEEV

(2.12)
2(0) = 20 = (wo,w1) -

The V-continuity of ¢ and V-ellipticity of o(-,-) + A(-,-);, for A > 0 was detailed in [2, p.109].
This guarantees the existence of the operator A € £(V, V*) given by

o(®,0) = (A3, ¥) , .
To write (2.12) in an equivalent strong form, we restrict A to the system operator

domA = {(¢1,d2) € H|p2 € V, A1y + Aspo € H}

0 I (2.13)
A = )
A —A

where Aj;, As are defined in (2.2). It should be noted that A is the negative of the restriction to
domA of the operator A so that o(®, ¥) = (- AP, ¥),, for ® € domA, ¥ € V. A strong form of
the abstract system model (2.12) is given by

2(t) = Az(t) + Bu(t) inV*
(2.14)
2(0) = 2.

Existence, uniqueness and continuous dependence on data of the solution to (2.1) was first
proven in [9] and can also be found in [2, Chapter 4]. For the first order form of the system,
existence and uniqueness of the solution together with its equivalence to the second order weak
solution are presented in [2, 9].

3 Infinite Dimensional Control

The abstract model (2.12) (equivalently (2.14)) is useful in applications where the structure
undergoes initial deformations and vibrates to a steady state. Control methods for this case are
designed to attenuate only the transient state responses.

The output observations in the observation space ) are given by z,, = Cz(t) where C €
L(H,Y) is bounded. As already noted, the operator C is often unbounded in applications but
we only consider the bounded case here. We also make the simplifying assumption that the
full state z = (w,w) is available for the computation of the feedback control u(¢). In many
practical applications, current measuring devices can only deliver partial state measurements
hence compensators must be included in the control design. The reader is referred to [2, Chapters
7.5 and 8] for discussions regarding compensators and [1] for a summary of results on unbounded
observation operators C.

The quadratic functional we minimize in order to determine the optimal control @ for the
infinite horizon control problem is

J(u, 20) = /0 b {||cz(t)||2y + HRl/Zu(t)HZ} dt (3.15)



subject to
2(t) Az(t) + Bu(t)

z(0) = 2.

Here, the positive, self-adjoint operator R = (R'/?)? € L(U,U) is used to soft constrain the
control input. We do not state results for the finite horizon problem but the reader is referred
to discussions in [1, Theorem 3.1] and [2, Chapter 7.2.1].

We first give the definitions for the pair (A, B) to be stabilizable and (A,C) to be detectable
before stating a theorem which which uses these conditions to guarantee the existence of optimal

controls minimizing (3.15).

Definition 3.1 The pair (A, B) is said to be stabilizable if there exists an operator K € L(V*,U)
such that A—BK generates an exponentially stable semigroup on V* (i.e., there exists M > 1, w >

0 such that ||e!A=BK) ”L(V*) < Me“t).

Definition 3.2 The pair (A,C) is said to be detectable if there exists an operator F € L(Y,V*)

such that A — FC generates an exponentially stable semigroup on V*.
Theorem 3.1 If (A, B) is stabilizable and (A,C) is detectable, then the algebraic Riccati equation
(A*T+TA-TBR™'B*M+C*C)z=0 Vz€eV (3.16)

has a unique mon-negative solution 11 € L(V*,V), A — BR™B*II generates an ezponentially
stable closed loop semigroup S(t) on H,V,V*, and the optimal control that minimizes (3.15) is
given by

a(t) = —R™'B*TIz(t)

where Z(t) = S(t)zo for zo € V*.

Note: Theorem 3.1 is Theorem 7.5 in [2] and its proof can be found in [1].

4 Approximation and Finite Dimensional Control

The solutions to (2.1) or (2.14) together with the optimal controls given by Theorem 3.1 are
infinite dimensional. For numerical applications, we use Galerkin approximations to obtain
solutions in finite dimensional subspaces V¥ C V C H. The bases for these subspaces can
consist of modes, splines, polynomials, finite elements, or reduced basis elements.

Since V = V x V, we use the superscript N to denote N -dimensional subspaces of V' and use
the superscript 2\ to denote the 2A/-dimensional subspace V2V = VN x VN The following
approximation condition is necessary for the convergence of the finite dimensional solutions to
the infinite dimensional solutions to (2.1) or (2.14)

(HIN) Let V be a Hilbert space. For any z € V, there exists a sequence ¥ € V¥ such that
|z—2N|V—>0asN—>oo.

We now define the operators Ajlv : VN 5 VN and Aé\f : VN 5 VN which approximate A;
and Aj, respectively, by restricting the corresponding sesquilinear forms to VN x V¥V ie.,

(AY ¢, 9)
(AY ¢, ),

g1 (d)a w) V¢7 ¢ € VN

4.17
o2(6,9) Vo, e VN 4



Similarly, the operator A2V : V2V — V2N ig defined by the restriction of o on V2V x V2V with
definition
(-AN, W), =0(2,¥) VO,TeVN. (4.18)

It readily follows that

AN (4.19)

The usual projection operators from H onto V¥V and from # onto V?V are denoted by PV and

P2N | respectively, and are defined by
PN e VN and (PNg—¢,9), =0 VpeV¥

(4.20)
PNe e VN and (PPNG - @, W), =0 V¥ e VN .

The control operator B is approximated by B2V by restricting it to the finite dimensional subspace
using its adjoint

(BNu, @), = (u,B"¥), , V¥V,
and C?V is the restriction of C to V. Thus, the finite dimensional analogue to (2.14) is given
by

2N = ANz(t) + BNu(t) in VNV

2N00) = PNy .

The following is Lemma 4.1 in [1] which guarantees the convergence of the finite dimensional

(4.21)

Galerkin solutions.

Theorem 4.1 (Lemma 4.1 in [1]) Suppose (HIN) is satisfied and let Bu € L*(0,T;V*) and

20 € H. If 2(t) € V is the solution to (2.14) and 2>V (t) € V*N [t > 0 satisfies
d

— (M (1), W), + (N (), ®) = (BN u(t), )

] 2N
7 Yo eV

vy 2 (4.22)
2N(0) = PNz ,
then the error function e*VN (t) = 22N (t) — 2(t) satisfies
”62N(t)”% =0

and .
/||e2N(s)Hids—>0 as N = oo
0

uniformly in t € [0,T].

The approximate infinite horizon control problem for the system involves finding the control
u € L*(0, 00;1/) which minimizes

e 2
TN (u, 22N) = / {||c2Nz2N(t)||2y + HR1/2u(t)Hu}dt (4.23)
0
subject to 22V satisfying
Z2N(t) — .A2NZ2N + BQNu(t) , t>0 ( )
4.24
2N0) = PNy =23V

The analogous definition of stabilizable and detectable matrix pairs for finite dimensional systems
will be stated before we present the convergence theorem.



Definition 4.1 The pair (A*N,B*N) is said to be uniformly stabilizable if there exist constants
M; > 1,w; > 0 independent of N and a sequence of operators KN ¢ E(VZN,Z/{) such that
sup s |/C2N| < oo and

Het(AM*Bw’CM)PQNzHH < Mye ||zl
for z € H.

Definition 4.2 The pair (AN ,C?N) is said to be uniformly detectable if there exist constants
My > 1,ws > 0 independent of N and a sequence of operators F>N ¢ L’(y,VQN) such that
sup |f2N| < oo and

|‘et(A2N7f2NCZN)P2NzHH < Maye 2! ll2l3
for z € H.

Theorem 4.2 Suppose V i) H, where the embedding i is compact. Let the sesquilinear form
o associated with the first-order system (2.14) be continuous and V-elliptic. Assume that the
operators A,B,C are such that (A, B) is stabilizable and (A,C) is detectable where B € L(U,V*)
is unbounded and C € L(H,Y) is bounded. Consider an approzimation method which satisfies
(H1N). Finally, suppose that for fized No and N' > Ny, the pair (A2N,32N) is uniformly
stabilizable and (AN ,C*N) is uniformly detectable.

Then for N sufficiently large, there exists a unique nonnegative self-adjoint solution TI*N €
L(V*,V) to the Nt approzimate algebraic Riccati equation (3.16) in VN with A, B,C replaced
by AN BN C2N | respectively. There also exist constants Ms > 1 and ws > 0 independent of

2N _ 32N o —1 2N * 2N
N such that S*N(t) = (A BRI )¢ satisfies

8™ @) [|yon < Mse™s" £ >0
or equivalently

t .AZNfBZNR_lBQN*
e ( )P2N20

< M3€7w3t ”’ZOH'H ,t0>0,20 € H .
H

Additionally, the convergences

IPNPN 5 510z in V for every z € V*

”BQN*HQNPQN - B*HHE(H,L{) =0,

as N = oo, of the Riccati and control operators are obtained. Moreover, the feedback system
operator A— BR™'B>*N"II?N generates an exponentially stable analytic semigroup on H and for
every zg € H,

TN (=BT 2(), 20 ) = J(a,20) < (V) ol

where e(N) = as N = c.

Theorem 4.2 is Theorem 7.10 in [2] in which the assumptions of uniform stabilizability of
(AN B*N) and uniform detectability of (A%V,C?N) can be difficult to directly verify. Hence we
need additional results based on readily confirmed assumptions. For general first-order systems,



Lemma 4.7 in [1] (which is restated as Lemma 7.12 in [2]) guarantees that (A*Y, B?V) is stabi-
lizable provided (A, B) is stabilizable and the injection V < H is compact. For the second-order
system rewritten as a first-order system, the definition of the product spaces V = V x V and
H = H x V precludes the possibility of compactness of i : V — H, even when V — H is
compact. Hence we require the following lemma to obtain uniform exponential bounds on the
approximating semigroups S?V (t).

Lemma 4.1 (Lemma 6.2 in [1]) Suppose V < H, where i is compact. Moreover, suppose that
the damping sesquilinear form oo can be decomposed as o9 = yo1 + G2, for some v > 0, where

the continuous sesquilinear form Go satisfies for some p € R

. c
Rezs(6,6) 2 =S| — ullly for all €V .
Finally, suppose that the operator .Al_lfiz, where Ay € L(V,V*) is defined by

<A2¢’”>V*,V = 62(¢7 77) (425)

is compact on V.
Let T denote the open loop semigroup generated by the product space operator A and let T*N
be generated by A2N . If for some v > pand M >1

Tl < Me™, 130, (4.26)
then for any € > 0 there exists an integer N such that for N' > N
N 2N o1 (v+e)t
72X P ) < Mt >0,

for some constant M > 0 independent of N.

Since the proof of Lemma 6.2 in [1] is given only in sketchy form, we give a detailed proof here.
We first state and prove the following lemmas which will be used in proving Lemma, 4.1 below.

Lemma 4.2 (A/l\[)_1 = PY AT on VN, where P : V = VN is defined by

o1 (PYo—,9N) =0 forallypN e VN JgpeV . (4.27)

Proof:

e Since o1(-,-) gives rise to an inner product on V whose induced norm is equivalent to
the usual norm in V, then a closer inspection of (4.27) reveals that P‘/}lf is the projection
operator from V into V/ under the oy(-,-) inner product, i.e., the projection of V; onto
VN where V; is V with the o; inner product. It follows immediately that P{)lf from V onto
V¥ is well defined and linear. Now let ¢ be any arbitrary element of V. Then for any
pN e VvV,

o1 (A1_1¢N,1/)N) = <¢N,¢N>V*’V , (from (2.2))
<¢N=¢N>H , (since oV € V)
(Al () eV )

o1 ((A{‘/)_lqu,sz) . (from (4.17)) .



We note that A is invertible in V¥ follows from (4.17) and the V-ellipticity of o;. Thus,
o A1V — (AY) eV e) =0
for every ¢V € VN. But by the defining the relationships (4.27) we have
o1 (PYAT SN — AT N 9N) = 0 for all ¢,V € VV .
It follows that P{}lf AT LN = (Af[ )_1 #" and this completes the proof. [

Lemma 4.3 (A/l\[)_1 AN = P{,‘I/Aflﬂz on VN, where A is defined by the restriction of G5 on
VN e, AY : VN 5 VN s defined by

(Wo,0) =d:(60) VopeVV. (4.28)

Proof:

o Let ¢V € VV. Then for all N € VN
or (A1) AoV wV) = (AeN,wV) | (from Lemma 42,
(4.27) and (2.2))
_ <Agf¢N,¢N>H (since A ¢V € V)
= &5(¢V,¢") (from (4.28))

= <A2¢N,¢N> (from (4.25))

V=V
= (AAT Ao, 0

vV

= o (A;lquw N ) (from (2.2)) .

Therefore, o1 ((.Ajl\[)_1 AN N — Al_lfizqﬁN,wN) =0,v¢V € VN. We then conclude

from (4.27) that (A}) ™" AV ¢V = PY AT AN VoM € VIV, -
Lemma 4.4 H.Afl - P%Afl ”L(VV) -0

Proof:

e First we consider A7 as a compact operator from V to V by using the compact injections
i:V < H and i* : H* < V* and setting A;' = A;"i*i. Next, note that the convergence
P{,‘lf w — Iw ,Yw € V is evident from (H1N) where P{,‘lf is, as introduced above, the pro-
jection operator from V; onto VN (again V; is V with the the norm induced by the oy (-,-)
inner product). Thus convergence follows from |P$1fz — z|V1 < |2N - z|V1 <k |§N — z|v.

sup

Then
(Al_l - P{XAI_I>U
llvllv<1

= sup ||(I—P{,Y)Al_lv||v

llvllv <1

AT = POAT | vy

|4

= sup |(T = PY)w]|,,

10



where U = A7* <{||v||v < 1}) is a relatively compact subset in V since A7 is a compact

operator from V to V. Thus, by Chatelin’s Theorem*,

4

sup ||(I—P{,\1[)w||v —0.
eu

This gives us the desired result

“'Al_l - P{/\{‘AI_IHL(V,V) —0.

Lemma 4.5 HAflﬂg - P{,YA;IA2HL(V v — 0 where .Al_lﬂg is compact on V.

Proof:

e The proof of this lemma is similar to the proof given for the previous lemma.

We now give the proof of Lemma 4.1.

Proof of Lemma 4.1:

e We first express the sesquilinear form o in terms of components,

then

Rea(®,®)

v

v

o(®, V) = —(p2,%1)y, +01(¢1,%2) + 02(d2,%2) ,

Re{— (2, P1)y, +01(d1,¢2) + 02(d2, 92) }
Reas(¢z,¢2) ,  since (-,-),. is equivalent to oy (-,-)
YReo1 (¢2,d2) + Reda(Pa, p2) , since

02(6, ) = 7018, ¥) + 62(4, ) for some 7 > 0
veallall}y — SI62l - pllgallyy . since

Rea1(9,9) 2 eal|glff (see (H2)), and

2

~ C27
Reds (0, 9) > ~ 2w} — ullwlh
C
2 lially - uloal
C
2 lially + ol - i gl + llnll}

. YC2 2 2
min { L2, u} @I} — @l -

It follows that the linear operator A associated with o (see (2.13)) is the infinitesimal

generator of a Cy semigroup T (t) satisfying

T Ol gy < MeH (4.29)

4Theorem 3.2 in [10]: Suppose that T,z — T'z,x € X. Then for any relatively compact set U, sup, ey ||(Tn —

T)al| = 0.
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and thus (4.26) holds with v = u. Now suppose (4.26) holds for any v > p, i.e., suppose
T @) < M et is satisfied. To prove the lemma, we show Ve > 0, there exists N, such
that for N > N,

TN OP™ | gy < Me¥F", £>0. (4.30)

The next step involves writing the semigroup 7 (¢) in terms of the generator A using the
inverse of the Laplace transform. From the result above that A is the infinitesimal generator
of a Cy semigroup satisfying (4.26), it follows that A — vI generates a Cy semigroup of
contractions S(t) satisfying [|S(t)|| ;5 < M, where T (t) = S(t)e*t. Theorem 6.A in [7]
guarantees the existence of ¢ such that 0 < § < 7/4 and

p(A=vI) DEs={2€C : |arg(z)| < 7/2+ 4} .

By Theorem 7.7 in [11], we can express S(t) as

S@) = L/e”(AI—(A—uI))*ld}\

21
1
- L / (A + )] — A)1d)
277'7/ T

where I is a smooth curve in X5 U{0} running from coe=® to coe’ for /2 <9 < w/2+4.
Since T (t) = e*!S(t), we have
1
T() = = / M (A + )T — A) L) |
r

= 2mi
Shifting the path of integration T by v and denoting it by I'’, we have

T(t) = i/ (N — A)~ld) . (4.31)
F,

T 2mi
The finite dimensional semigroup can similarly be written as
1 _
T2V (1) = _/ M (AT — AN) Han .
27 T

7)2/\/’

Multiplying by and obtaining the norm of both sides, we have the estimate

1

[T 0P < o

/p/ EY H (A — 4207 PWHL(H) x| -

Thus, if we find My and N, such that whenever Re\ > v +¢ and N > N,,

Jos a2y 2], <0

then we establish (4.30). This uniform boundedness will be shown by decomposing the
resolvent (/\I — AN )71 into its components. To this end, consider the resolvent equation

omen(1)-(5)

where (f,g) € H and (2], 2)) € V*V. Using the components of A given in (4.19), and
letting P2V (£, 9) = (fV, g"), we obtain

S

gV o= A+ AV + AN,

12



Eliminating 23’ in the system of equations above and using the assumption Ay = v.A; + A,

we have

)\2
(I + (AN~ +

NY—1 N N _
M+ 1 (A7)~ A2>z1—

A +1
7 (4.32)

N (AN N NN
,\7+1+/\7+1 (gNJr)‘f A S )

To simplify notation, let

)\2
G:I+m¢41_1+)\ +1A11A2€£(VV)
and s e
__7 1) i
Sl v )\7+1(g+’\f+“42f)ev

and denote the corresponding finite dimensional expressions by GV and ¢V, respectively. If
we show that ||2V]|y is bounded, then (4.30) is satisfied where 2}V is given by GV 2V = ¢V,
for ||(f,9)llx <1, ReX > v+e and N' > N.. The next step is then to show that the inverse
of G exists and is bounded in £(V,V) whenever ReX > v. Since (A — A)™" exists and
is bounded in L£(H,H) whenever Re\ > v, then for every (f,g) € H, we can solve for

(21, 22) € H such that
(AI—A)<z1>=<f> _
) g
Solving for z; yields

A - ~f AT!

p— 71 A

= (I+ M+1Al (/\+A2)> (M+1 A vy (g+Af+A2f))

and [|z1|ly < M; whenever [|(f,9)ll;; < 1. Thus, G ! exists and is bounded in L(V,V)
whenever Re\ > v. Now, we consider the finite dimensional operators and show bounded-

ness of ||22¥||y. Note first that GV z) can be expressed as

NN A2 Ny—1
G Zl = I+ (Al)

Ny—1 jN N
Ay +1 +)\'7+1(A1) A2>z1

A 1

A2 _ _
A o~ o~
“3 1 (AT = (A A 2

Since GN 2V = ¢V we have

N N A’ N N A N
£ :Gz1 —W(.Al (A ) ) z1 )\ +1(A11A2 ( ) 1./4 )
Equivalently,
_ N A2 N
zyzgl{gJ,MJr( (A4)?)
A
e (AT Az — (AY) 1 AY) }



Taking the V' norm of both sides and using Lemma 4.2 and Lemma 4.3, we obtain

1Ay < 16 e, (||§N||v+‘ ‘HAI — Py AT

o e 121

1 1
oy 1A = AT ) g |, )
From the convergences in Lemma 4.4 and Lemma 4.5, it can be seen that ||z} ||y is bounded

and this completes the proof. [
Remarks:

1. For the motivating example (2.4), the assumption o2 = o1 + G2 in Lemma 4.1 is sat-
isfied if we ignore passive patch contributions to the system and assume that the den-
sity, Young’s modulus, air damping and Kelvin-Voigt damping are constant. In this case,
a1(p, ) = [y EI¢""dy, o2(¢, %) = [y epl¢"y"dy + cq [y pdy and thus v = cp/E and
G2 = Cq fo ¢pdy, where 6o satisfies

Reva(6,9) = ~p Il > 31611 -

The operator As generated by G2 is Ay = coI which is clearly bounded. We then write
A; ! as a compact operator on V by A; ! = A; 'i*i, since i : V — H and i* : H < V* are
compact and A; ! is bounded (due to (H2)). Since A, is bounded, it follows that A; ! A,
is compact on V.

2. If passive contributions are incorporated in the model, i.e., o1 and o2 are of the form (2.10),
Lemma 4.1 is applicable only if the actuators are employed in such a manner that the sum of
the structure and actuator stiffness coefficients is a multiple of the sum of the structure and
actuator Kelvin-Voigt damping (this is necessary to satisfy the assumption o2 = o1 + 72).
One possible way to achieve this is to embed the actuators so that material properties of
the composite structure remain constant over the region covered by the patches.

3. The assumption of exponential stability of (A, B) in Theorem 4.2 is guaranteed by Theo-
rem 7.15 in [2].

5 Concluding Remarks

We presented and proved Lemma 4.1 which can be used to establish uniform stabilizability of
approximate finite dimensional systems arising in structural systems. In the context presented,
uniform stabilizability is a sufficient condition for the convergence of the Riccati solution and
control gains. As demonstrated in the remarks above and in [2, Chapter 7], the conditions in the
lemma are easily verifiable for the motivating example (2.4) in which passive patch contributions
are ignored. We point out that these ideas can be readily extended to systems involving shells
or plates.

For models incorporating general passive patch contributions, the assumption g2 = yo;, + 72
with G5 satisfying the hypothesis in Lemma, 4.1 may not be satisfied and the authors are currently
extending the lemma to include this more general case. Such an extension would complete the
theory for convergence of Riccati and optimal control solutions for systems with no exogenous

14



force and bounded observation operator C. Numerical results demonstrating convergence of sub-

optimal controls for thin shell structures incorporating passive piezoceramic patch contributions

have been demonstrated in [12, 4, 5].
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